
A Survey on the Programmable Data Plane:
Abstractions, Architectures, and Open Problems

Roberto Bifulco
NEC Laboratories Europe, Germany

Email: roberto.bifulco@neclab.eu

Gábor Rétvári
MTA-BME Information Systems Research Group

Email: retvari@tmit.bme.hu

Abstract—Programmable switches allow the packet processing
behavior to be applied to transmitted packets, including the type,
sequence, and semantics of processing operations, to be reconfig-
ured on the fly in a systematic fashion. As such, programmable
switches are the key to realize the next-generation of network
services and applications, including software-defined networking,
5G, IoT, and massive-scale cloud computing. This paper presents
a survey on the recent trends and issues in the design and
implementation of programmable network devices, focusing on
the prominent abstractions and architectures proposed, debated,
realized, and deployed during the last 10 years. First we describe
the anatomy of a programmable switch, then we highlight the
most important pointers from the literature and cast different
taxonomies for the field, and finally we sketch open issues and
possible future research directions.

Index Terms—software-defined networks, data plane architec-
ture, router design, programmable switches, data flow graphs,
match-action pipelines, stateless and stateful network functions

I. INTRODUCTION

With the advent of the 5G mobile standard, large-scale
cloud computing, ubiquitous IoT, and massive machine learn-
ing and big data applications, operators will need to adopt
completely new ways to architect communication networks,
making software-defined networking, edge computing, network-
function virtualization, and service chaining the norm rather
than the exception. The forthcoming applications require
Network Interface Cards (NICs) and network devices, such
as switches and routers, to support continuously evolving
and heterogeneous sets of protocols and functions on top of
the impressive selection of features already supported today,
including basic L2/L3/L4 processing, tunneling and VPN
protocols, load balancing, congestion control and Quality of
Service, firewalls and intrusion detection systems, etc.

Supporting such an extensive feature set at the required
flexibility, dynamicity, performance, and efficiency requires
careful and expensive engineering effort on the part of device
vendors, usually involving the tedious and costly design,
manufacturing, testing, and deployment of dedicated hardware
components [1, 2]. This state of facts raises two problems.
On the one hand, adding new features necessitates a long
development process and rapid device upgrade cycles. This
pushes vendors to support a given feature only when it becomes
widely requested, impeding innovation. On the other hand,
implementing every single network protocol in the packet

processing logic leads to inefficiencies, due to wasting valuable
memory space, CPU cycles, and silicon “real estate” for features
that may never be used in operation.

To address these issues, a new generation of networking
devices has been recently introduced, permitting the packet
processing functionality implemented by a device to be
comprehensively reconfigured on the fly. New software-based
network switches, running on general purpose CPUs, provide
reconfigurability through an extensive set of processing primi-
tives out of which various pipelines can be built using standard
programming techniques [3, 4, 5, 6, 7]. Leveraging advances in
IO frameworks [8, 9], these programmable software switches
can achieve a forwarding throughput in the order of tens of
Gbps on a single commodity server blade. More challenging
workloads, in the range of hundreds of Gbps, are instead the
realm of programmable hardware components and the devices
built on top, like programmable NICs (SmartNICs) [10, 11,
12, 13] and programmable switches [14, 15, 16]. Similarly
to software switches, programmable hardware-accelerated
network appliances also offer various primitives that can be
systematically assembled into complex network functions, using
a domain specific language [17] or some dialect of a general
purpose language [18, 19].

How to fix the elemental packet processing primitives to
support the broadest possible selection of network applications
at the highest possible performance? How to expose the,
potentially very complex, processing logic to the operator for
easy, secure, and verifiable configuration? How to abstract,
replicate, and monitor ephemeral packet processing state
embedded deeply into this logic? These are currently among the
most actively debated questions in the networking community.
Following the footsteps of [20], in this paper we provide
a survey on the current trends and issues in programmable
software and hardware network devices, including the available
abstractions, employed design solutions, and open problems.
Our focus is on the data plane and, in particular, on the
reconfigurable packet processing functionality inside the data
plane responsible for enforcing forwarding decisions; for
comprehensive surveys on software-defined networking, and
the intellectual road that led there, see [21, 22, 23, 24].

The rest of the paper is organized as follows. In Section II
we describe the most important components and functionality
of a programmable switch and then in Section III we present
the designs from the related literature organized according to000/18/$31.00 c© 2018 IEEE

roberto.bifulco@neclab.eu
retvari@tmit.bme.hu

different taxonomies. In Section IV we highlight some of the
most compelling issues and open problems in the field and
finally in Section V we conclude the paper.

II. THE ANATOMY OF A PROGRAMMABLE SWITCH

Conventional network gear, regardless of the implementation
(e.g., pure software or specialized hardware) and function (e.g.,
a switch, an edge router, or a firewall), usually includes the
control plane and the data plane integrated into a single device
form factor. In this context, the control plane is in charge
of establishing packet processing policies, such as where to
forward a packet or how to rewrite its header, and managing the
device operations, including checking the device’s health and
performing maintenance operations. The data plane, in contrast,
is responsible solely for executing the packet processing policy
set by the control plane.

A fundamental enabler for network device programmability
was the logical and physicial separation of the control plane
from the data plane, with a standard and open API to allow
for interactions between the two [24, 40, 36, 41]. In the
case of OpenFlow, for instance, the data plane is realized
by “dumb” OpenFlow switches administered remotely by a
separate controller [36]. In this paper our focus is on these
“dumb” switches and, in particular, the way they provide pro-
grammability, achieve high performance, and expose embedded
state information to the control plane.

To enforce control plane decisions, the data plane performs
a handful of operations on received packets. First, it parses (a
subset of) the packet bytes to understand the control information
they carry. Then, the extracted information is used to determine
the sequence of processing operations that need to be applied to
the packet, like performing some computation (e.g., calculation
of a checksum), writing some parts of the packet (e.g., writing
the new checksum into the appropriate header field), or storing
monitoring and state information (e.g., updating a counter if
the checksum was wrong). Finally, the modified packet is
forwarded based on the results of the performed operations,
which usually include the specification of the output port(s).

In this setting, programmability refers to the capability
of a switch to expose the packet processing logic to the
control plane to be systematically, rapidly, and comprehensibly
reconfigured. The emphasis here is on the comprehensiveness;
while conventional ”fixed-function” network devices allow
modification of the forwarding policy at least partially (e.g.,
adding static IP routes or changing ACLs), the ability to
influence the parsing of packet headers, to provision forwarding
tables that match on arbitrary header fields, or to introduce
new processing actions, all in all, to facilitate the deployment
of completely new network protocols in operation, is unique
to programmable switches.

III. TAXONOMIES FOR PROGRAMMABLE SWITCHES

In this section, we present broad classifications for the
different architectural aspects of programmable data plane
technologies. First, we start with a layer-oriented and an
implementation-driven approach, and then we describe a

programming-language-centered classification. Finally, we de-
scribe the stateless and the stateful data plane abstractions. The
taxonomies are summarized in Table I. As an annex to this
survey an annotated reading list for students, practitioners, and
researchers interested in the area of programmable data plane
technologies is also available online [42].

A. System Level View

Embracing a systems-engineering approach, first we present
a layered view of programmable switch architectures.

At the upper layer, the control plane is in charge of
orchestrating the operations of the network as a whole. Tradi-
tionally, this entailed the specification of exhaustive per-switch
control programs to set device-level behavior [43, 36]. With
the fulfillment of the software-defined networking paradigm,
however, the control plane has gradually moved towards
higher-level abstractions that synthetically capture network-
wide policies (the so called “intent layer”), which are then
compiled into conventional device-level policies (“intermediate
representations”) in a separate step [19]. Examples of such
high-level languages include Pyretic/Frenetic [25], Maple [26],
Kinetic [27], NetEgg [28]; see [44] for a recent survey.

At the lower layer, the network’s data plane is collectively
represented by the packet processing logic of the programmable
switches administered jointly by the control plane. The
data plane exposes certain abstractions of its configurable
functionality to the control plane which in turn uses data
plane programming languages to configure the static packet
processing semantics. At runtime this pipeline is filled with
dynamic policies, e.g., entries are added to flow tables, actions
are associated with flows, etc. [41, 45]. In addition, state and
monitoring information is constantly collected in the data plane
and presented to the control plane for verifying correct behavior,
monitoring performance, and handling failures.

In this layered view, data plane compilation is a downwards
mapping from a higher-layer description of the intended
network behavior to lower-layer abstractions [36, 17, 25, 26,
27, 28, 44, 46], verification/monitoring is an upwards mapping
whereby the lower-layer exposes some aggregate view of its
state to the upper layers for checking and validation [27,
47, 48], and the coupling between the two is created by the
abstractions adopted by the data plane. Interestingly, this gives
rise to a circular dependency in the co-evolution of the control
plane and the data plane, in that the capabilities of the data
plane determine the elemental constructs high-level network
programming languages are built upon, which in turn guide
the data plane designers towards new processing abstractions
(see e.g., the recent advances from OpenFlow[36] to P4 [17]
and PoF [49] brought about by RMT [50, 51]).

B. Software vs. Hardware-based Switches

Processing each and every single packet received by the
device, the data plane is the most performance-critical part
of a network and, as such, usually specialized hardware com-
ponents and sophisticated software acceleration methods are
employed to implement it. On the hardware front the data plane

LAYER-BASED
CONTROL/INTENT LAYER

Pyretic [25], Maple [26], Kinetic [27], NetEgg [28]

DATA PLANE LAYER
Barefoot Tofino [16], NetFPGA [12], Cavium XPliant [14],

Open vSwitch [3], BESS [29], Vpp [30], ESwitch [7],
PISCES [31], NetBricks [32], AccelNet [33], Andromeda [34]

IMPLEMENTATION-
BASED

SOFTWARE SWITCHES
OVS [3], BESS [29], VPP [30], ESwitch [7],

PISCES [31], NetBricks [32], Andromeda [34]

HARDWARE SWITCHES
Barefoot Tofino [16], NetFPGA [12],

Cavium XPliant [14], Intel Flexpipe [15],
Netronome AgilioTM CX [10], Intel XScale [11]

ABSTRACTION-
BASED

DATA FLOW GRAPH
Click [35], VPP [30], BESS [29], NetBricks [32]

MATCH-ACTION PIPELINE
OpenFlow [36], P4 [17], FAST [37], OpenState [38], Domino [39]

STATE-BASED
STATEFUL

FAST [37], OpenState [38], NetBricks [32], Domino [39]
STATELESS

OpenFlow [36], P41 [17]
TABLE I

TAXONOMIES FOR PROGRAMMABLE DATA PLANE DEVICES AND HIGHLIGHTS FROM THE RELATED LITERATURE.

functionality may be implemented in an ASIC (Application
Specicic IC) [15, 16], an FPGA (Field-programmable Gate
Array) [12, 33], or a network processor [14, 10, 11], using
a dedicated packet classification engine realized in Ternary
Content Addressable Memory chips (TCAM, [52]), whereas
a software switch executes the entire processing logic on a
commodity CPU [3, 29, 6, 30, 7, 31, 32, 34] on top of a fast
packet-classification algorithm/data structure [53, 54, 55].

Note, however, that the distinction between hardware and
software switches may not be so sharp in reality. For instance,
a hardware-based appliance may still invoke a general purpose
CPU (the “slow path”) to run certain functions that do not
require high-performance or that are not supported natively by
the underlying hardware. Similarly, a modern software switch
also relies on domain-specific hardware assistance for efficiency
reasons, like Data Direct I/O (DDIO), segmentation offload
(TSO/GSO), Receive Side Scaling and Receive Packet Steering
(RSS/RPS), etc.
C. Abstractions and Architectures

The differences among data plane technologies are often
reflected in the packet processing primitives exposed to the
control plane and programming language constructs that can be
used to access these primitives. Given this inherent architectural
coupling, we next discuss the following three fundamental
categories for programmable switches: the data flow graph
abstraction and related switch architectures, the match-action
pipeline abstraction, and hybrid switch architectures that
implement different combinations of the previous abstractions.

1) The data flow graph abstraction: Early efforts borrowed
heavily from generic systems design [56, 57] and machine
learning [58], adopting the data-flow graph abstraction to
architect programmable switches [35]. A data flow graph
describes processing logic as a graph, with the nodes rep-
resenting elemental computation stages and edges representing
the way data moves from one computation stage to the other.
A nice property of this abstraction is its simplicity, allowing
the programmer to assemble a well-defined set of processing
nodes into meaningful programs using a familiar graph-oriented
mental model. This way, computational primitives (nodes) are
developed only once and then can be freely re-used as many
times as needed to generate new modular functionality, creating
a rapid development platform with a smooth learning curve.

Perhaps the earliest programmable switch framework adopt-
ing the data flow graph abstraction was the Click modular

software router [35]. The unit of data moving through the
Click graph is a network packet on which nodes can perform
simple packet processing operations, such as header parsing,
checksum computation and verification, field rewriting, ACLs,
etc. Some nodes provide network protocol specific functions,
such as handling ARP requests and responses, while others offer
more general data flow control functions, such as switching (in
the sense of selecting a direction out of several alternatives)
or load balancing and queuing.

ClickOS [4], Vector Packet Processing (VPP) from the FD.io
project [30], the Berkeley Extensible Software Switch (BESS,
[29]), and NetBricks [32] adopt a similar design, with the
difference that the fundamental data unit that moves along
the data flow graph is now a vector of packets instead of a
single packet. This development stems from the observation
that batch-processing amortizes I/O costs over multiple packets
and, using the built-in Single-Instruction-Multiple-Data (SIMD)
instruction sets of modern CPUs, results more efficient software
implementations [59, 9, 60]. NetBricks, in addition, introduces
a new framework for the isolation of potentially untrusted
packet processing nodes, using novel language-level constructs
and zero-cost compile-time abstractions [32].

The presence of user-defined functionality abstracted as data
flow graph nodes gives a great flexibility and extendibility [4,
61]. At the same time, this great flexibility tends to make
the resultant designs piecemeal, and heterogeneity complicates
high-level network-wide abstractions and encumbers perfor-
mance optimization [62].

2) The match-action pipeline abstraction: The match-action
abstraction describes data plane programs using a sequence
of lookup tables organized into a hierarchical structure [36,
17, 3, 31, 7]. A subset of the packet header fields is used
to perform a flow-table lookup in the first table to identify
the corresponding packet processing actions, which can then
instruct the switch to rewrite packet contents, encapsulate/
decapsulate tunnel headers, drop or forward the packet, or
defer packet processing to further flow tables. The programmer
in turn configures the packet processing behavior through
dynamically setting the content of the flow tables, by adding,
removing, or modifying individual entries with the associated
matching rules and processing actions via a standardized API
[45]. This has the benefit of exposing reconfigurable data plane
functionality to operators using the familiar notions of flows
identified by matching rules defined on certain header fields (an

abstraction extensively used in firewalls and ACLs), structured
as a hierarchy of lookup tables (used by conventional fixed-
function router ASICs to synthesize L2/L3/L4 pipelines).

The match-action abstraction was popularized for program-
ming switches by the OpenFlow protocol [36], which in turn
borrowed greatly from Ethane [43]. OpenFlow at its first version
allowed the definition of only a single flow table using a rather
limited set of header fields; the abstraction was later extended
to a pipeline of multiple flow tables defined over basically
arbitrary (but fixed) header fields. Currently Open vSwitch
remains the most popular OpenFlow software switch [3], using
a universal flow-caching based datapath for implementing the
match-action pipeline. This design was improved upon by
ESwitch, introducing data plane specialization and on-the-
fly template-based datapath compilation to achieve line-rate
OpenFlow software switching.

OpenFlow, however, is limited to a strict set of header
fields; Protocol-Oblivious Forwarding (POF, [49]) and P4
(Programming Protocol-independent Packet Processors, [17])
generalize the match-action framework to parsing/deparsing
arbitrary header fields, flexible lookup tables with rich seman-
tics, configurable control flow, and platform-specific extensions.
Again, this development was made possible by advances in
switching ASIC design, such as the Reconfigurable Match
Tables abstraction that overcomes two limitations in OpenFlow
ASICs by letting match-action tables to be defined on arbitrary
header fields and extending the, previously rather limited,
repertoire of packet processing actions (RMT, [50]). Lately, P4
and the accompanying hardware and software switch projects
[15, 16, 31] have met with increasing enthusiasm from the side
of device vendors, operators, and service providers [63, 64].

3) Hybrid switch abstractions: With the introduction of
multi-table match-action pipelines in the OpenFlow v1.1
specification, the distinction between the data flow graph and
the match-action abstractions has become increasingly blurry
[36]. Indeed, a hierarchical match-action pipeline can easily be
conceptualized as a special data flow graph with lookup tables
as processing nodes and “goto-table” instructions as the edges.
Not surprisingly, hybrid software-hardware switch architectures
that mix the above abstractions with fresh ideas from distributed
systems and multi-processor design have emerged in great
numbers recently. Being a massively parallel workload, packet
processing lends itself readily to be implemented in multi-
threaded hardware like Graphics Processing Units (GPUs, [59]),
with the pros and cons being actively debated in the systems
community [65, 66]. Alternatively, dRMT extends the strictly
sequential match-action processing abstraction of RMT towards
a more flexible architecture [51], Intel FlexPipe [15] introduces
a generic pipeline architecure, while FlexNIC implements a
new network DMA interface that allows operating systems and
applications to install simple packet processing rules into the
NIC, which then executes these operations while transferring
the packet to the host memory [67].

D. Stateful vs Stateless

Crucially, the content of network devices’ embedded memory
may be accessed and modified in operation. For example, the
result of a forwarding table lookup may need to be temporarily
stored to assign the packet to an output queue at a later stage.
Alternatively, packet counter may be incremented under certain
conditions. Such state information can be classified in two
coarsely defined categories: packet state (or “metadata”) and
global state [19]. Packet state is associated with a single packet,
each packet has its own packet state, and such state exists only
during processing the associated packet. Conversely, global
state is associated with the device, it is global, and it persists
across packets. While packet state is accessed and modified
only from within the data plane, global state may be accessed
by the control plane as well. For example, packet’s ingress port
metadata is set and read exclusively by the data plane in order
to, e.g., enforce access control rules; flow table entries are set
by the control plane and read by, but usually not modified
from, the data plane (global state); while a Network Address
Translation mapping (also a global state) may be modified by
both the data plane (on creation) and the control plane (e.g.,
for replication, migration, or scale-out).

Based on these considerations, a programmable data plane
technology that is limited to only read global state but never to
actually write it is generally referred to as stateless [36], while
a data plane that also admits writing global state from within is
called stateful [68]. In general, stateless data planes are much
simpler but offer limited functionality (e.g., cannot implement a
NAT without invoking a middlebox), while stateful data planes
are much more complex, because the embedded global state
information must be carefully synchronized between switches
that may simultaneously access them [69].

IV. OPEN ISSUES

As we have seen, the art and science of programmable
switch architectures revolve around abstractions. Ideally, an
abstraction should be simple enough to capture just the right
amount of configurable data plane functionality to admit
efficient hardware and software implementations, but profound
enough to allow higher-layers to synthesize complex packet
processing behavior on top. In addition, an ideal abstraction
should lend itself easily to be exposed to the control plane
as a secure and efficient data plane API [41, 36], it should
adequately handle global state embedded in the data plane and
provide a well-defined consistency model [69], it should admit
analytic performance models [70, 7] and automatic program
transformations for performance optimization [7], it should
separate static semantics from dynamic behavior [45], and last
but not least it should embrace a convenient mental model
that is familiar to network operators and programmers. Not
surprisingly, many of the open problems in the field are related
to finding the right abstraction for the data plane functionality.

1) Abstractions for comprehensive reconfigurability: With
the recent trends toward moving from the rigid data plane
programming model of OpenFlow to the much more flexible
P4 world, it has become essential to abstract and expose

every aspect of processing functionality a switch may perform.
This is not limited to the way packet processing policies are
represented in the data plane, including the method by which
packets are associated with the respective processing actions
to be executed on them, but extends to further critical packet
processing operations, and the reconfigurability thereof, ranging
from programmable packet parsing [71] to universal scheduling
and queuing schemes [72, 68].

But the quest towards more comprehensive reconfigurability
at the data plane should not stop at this point; indeed, new
abstractions for supporting multipath routing [73], dynamic
load-balancing [74], and data-plane level isolation and encryp-
tion [32, 75], would open the door to interesting new in-network
computation schemes to be deployed on top [76], like network-
accelerated key-value stores [77] and distributed consensus
protocols [78, 79], network-wide machine learning with data-
plane neural networks [80], programmable monitoring and
measurement [81], etc.

Open Problem 1. Find novel abstractions to render further
data plane functionality configurable and expose these abstrac-
tions to the control plane using a simple API.

2) Abstractions for exposing global state: The need to
scale systems to handle massive workloads increasingly pushes
designers to explore more complex solutions that handle some
state already in the switches’ data plane [74, 82, 83]. While
abstractions for stateless packet processing can be considered
rather solid at this point in time, stateful abstractions are still
in their infancy and no clear winner has yet emerged.

The complexity of a stateful abstraction lays in the need
to address state management problems (e.g., consistency)
in a programmer-friendly way, while still guaranteeing the
ability to support high-performance implementations. Here,
it should be noted that reading and writing to a memory is
one of the main sources of performance issues in modern
computing systems [50, 84]. Current proposals follow three
different approaches: consistency-, executor- and application-
based memory abstractions.

Consistency-based memory abstractions organize memory
according to the required consistency properties. For instance,
in NetBricks [32] a programmer can read and write state
to a memory that guarantees strong consistency, eventual
consistency, or no consistency at all. Some abstractions,
may provide a subset of the consistency models, such as
Domino [39] only provides strong consistency (at the cost
of limiting the range of supported algorithms at line rate). In
executor-based memory abstractions the programmer is exposed
to a simplified view of the underlying executor architecture.
packetC [18] follows this approach by dividing the memory
in processor-local and global areas. Finally, application-based
memory abstractions expose access to state following common
programming abstractions found in network applications. This
is the case of OpenState [38] and FAST [37], which in addition
to global state define also flow state. An instance of flow state
is associated with a single network flow and can be accessed
only during the processing of the such flow.

The three approaches implement different trade-offs. For ex-
ample, the executor-based abstraction gives the most flexibility
to the programmer, at the cost of increasing programming com-
plexity and reducing portability among executor architectures,
since a programmer needs to have a clear understanding on
how to partition its application’s state among different memory
areas. On the other side of the spectrum, application-based
abstractions provide a state access model that is in line with
most of the network applications, therefore simplifying the
development for the programmer, but leaving little flexibility
to experiment unconventional solutions.

A recent research direction tries to asses the effective need to
keep state in the data plane, by proposing an architecture where
a separate, dedicated data-store is in charge of maintaining
data-plane state while the data plane itself is stateless [85, 69].
Accordingly, when a switch needs some state information it
dynamically fetches it from the state-store. This architecture
makes state explicit and factors it out from switches, opening
the door to elastic scale-out, replication, migration, and
restoration [69]. Nonetheless, it should be noted that some
sort of soft state, i.e., a local cache, is usually still required for
performance reasons [86]. The handling of this cache could
be defined through one of the aforementioned abstractions.

Open Problem 2. Find an expressive yet simple model
to handle state operations in the data plane, simplifying
application programming and orchestration while ensuring
the ability of supporting high-performance implementations.

3) Abstractions for intent-based networking: Intent-based
networking marks the recent trend towards designing and
operating networks in terms of higher-level business policies,
and letting the network to deal with low-level concerns in an
automated, agile, secure, and verifiable way [87]. Intent-based
networking, however, raises a number of crucial problems in
programmable switch design.

Although recent progress in high-level network programming
languages has delivered important insights to realize the
vision of intent-based networking, in the form of efficient
language constructs and modular composition frameworks
[25, 26, 27, 28, 44, 46], it is still not clear how to best
expose data plane functionality to the operator offering the
maximum programming freedom while masking the underlying
complexities efficiently. Ideally, an “intent-based data plane
compiler” should actively attempt to find the data plane
representation that would yield the highest performance [7]
with the minimal data plane footprint [88, 89], built on a firm
theoretical foundation for optimizing data plane programs and
reasoning about performance [70, 7].

Open Problem 3. Design an optimizing intent-based data
plane compiler to map high-level business policies (and
the corresponding global state) to the underlying physical
infrastructure, built on a sound theory for data plane program
transformation and performance modeling.

4) Abstractions for verifiability: Data plane compilation,
that is, downward mapping from the intent layer to the data

plane is just one side of the coin. To close the control loop an
upwards mapping is also necessary, which would permit the
control plane to monitor and verify the operations of the data
plane. Indeed, recent results indicate that the network should
be architected from the ground up with verifiability in mind
[27], which may require the definition of new abstractions.

Open Problem 4. Find data plane abstractions and build
monitoring/verification frameworks on top, which allow the
intent layer to discover operational context, including global
state and load/resource availability, to verify correct operations
and to uncover network performance anomalies potentially
originating from malicious activity.

5) Abstractions for security and scalability: The size and of
the workloads that can be supported economically, efficiently,
and securely with programmable switches is fundamentally
constrained on the amount of resources available in the data
plane. Hardware switches are evidently limited by the capacity
of the ASICs and, in particular, the size of the built-in
TCAMs [90], and software switches are heavily burdened
by the inherent computational complexity of performing packet
classification on general purpose CPUs [53, 55, 54]. Indeed,
recent reports have found that the scalability and security [91]
of the programmable data plane remain to be of concern today.

Open Problem 5. Improve the general performance, scalabil-
ity, and security of programmable switches.

V. CONCLUSION

This paper provided a brief survey of the recent advance-
ments in programmable data plane design and implementation,
pointing the reader to a few relevant open problems. The field
is currently under active development, with new findings and
contributions appearing at a fast pace. To keep track of such
development, we are building and updating an annotated online
reading list [42], and encourage researchers to contribute.

ACKNOWLEDGMENT

This project has received funding from the European
Unions Horizon 2020 research and innovation pro-
gramme under the grant agreement No 671648 and
761493. The content of this paper does not reflect the
official opinion of the European Union. Responsibility

for the information and views expressed therein lies entirely with
the author(s). G. R. is with the Department of Telecommunications
and Media Informatics, Budapest University of Technology and
Economics.

REFERENCES

[1] S. Sezer et al. “Are we ready for SDN? Implementation
challenges for software-defined networks”. In: IEEE Com-
munications Magazine 51.7, 2013.

[2] N. McKeown. “Programmable Forwarding Planes are Here to
Stay”. In: NetPL 2017.

[3] B. Pfaff et al. “The Design and Implementation of Open
vSwitch”. In: USENIX NSDI ’15.

[4] J. Martins et al. “ClickOS and the Art of Network Function
Virtualization”. In: USENIX NSDI’14.

[5] L. Rizzo et al. “VALE, a Switched Ethernet for Virtual
Machines”. In: ACM CoNEXT ’12.

[6] M. Honda et al. “mSwitch: A Highly-scalable, Modular
Software Switch”. In: ACM SOSR ’15.

[7] L. Molnár et al. “Dataplane Specialization for High-
performance OpenFlow Software Switching”. In: ACM SIG-
COMM ’16.

[8] L. Rizzo. “Netmap: a novel framework for fast packet I/O”.
In: USENIX ATC’12.

[9] Intel. Intel DPDK: Data Plane Development Kit. project
website. 2016.

[10] Netronome. AgilioTM CX 2x40GbE Intelligent Server Adapter.
https://www.netronome.com/media/redactor files/PB Agilio
CX 2x40GbE.pdf.

[11] Intel. IXP4XX Product Line of Network Processors. http://www.
intel.com/content/www/us/en/intelligent-systems/previous-
generation/ intel - ixp4xx- intel - network- processor- product -
line.html.

[12] N. Zilberman et al. “NetFPGA SUME: Toward 100 Gbps as
Research Commodity”. In: IEEE Micro ’14 34.5, 2014.

[13] NetCope. FPGA NICs Specification. https://www.netcope.com/
en/products/fpga-boards.

[14] XPliant Ethernet Switch Product Family. http://www.cavium.
com/XPliant-Ethernet-Switch-ProductFamily.html.

[15] Intel FlexPipe. http://www.intel.com/content/dam/www/public/
us / en / documents / product - briefs / ethernet - switchfm6000 -
series-brief.pdf.

[16] Barefoot Networks. Barefoot Tofino: World’s fastest P4-
programmable Ethernet switch ASICs. https://barefootnetworks.
com/products/brief-tofino/.

[17] P. Bosshart et al. “P4: Programming protocol-independent
packet processors”. In: ACM SIGCOMM CCR 44.3, 2014.

[18] R. Duncan et al. “packetC: Language for High Performance
Packet Processing”. In: IEEE HPCC 2009.

[19] M. Shahbaz et al. “The Case for an Intermediate Representation
for Programmable Data Planes”. In: ACM SOSR ’15.

[20] S. Keshav et al. “Issues and trends in router design”. In: IEEE
Communications Magazine 36.5, May 1998.

[21] N. Zilberman et al. “Reconfigurable Network Systems and
Software-Defined Networking”. In: Proceedings of the IEEE
103.7, 2015.

[22] D. Kreutz et al. “Software-defined networking: A comprehen-
sive survey”. In: Proceedings of the IEEE 103.1, 2015.

[23] B. A. A. Nunes et al. “A survey of software-defined networking:
Past, present, and future of programmable networks”. In: IEEE
Communications Surveys & Tutorials 16.3, 2014.

[24] N. Feamster et al. “The Road to SDN”. In: Queue 11.12, Dec.
2013.

[25] C. Monsanto et al. “Composing Software Defined Networks”.
In: USENIX NSDI 2013.

[26] A. Voellmy et al. “Maple: simplifying SDN programming
using algorithmic policies”. In: ACM SIGCOMM CCR 43.4,
2013.

[27] H. Kim et al. “Kinetic: Verifiable Dynamic Network Control”.
In: NSDI’15.

[28] Y. Yuan et al. “Scenario-based Programming for SDN Policies”.
In: CoNEXT ’15.

[29] S. Han et al. SoftNIC: A Software NIC to Augment Hardware.
unpublished manuscript. 2015.

[30] FD.io. The Fast Data Project. project website. 2016.
[31] M. Shahbaz et al. “PISCES: A Programmable, Protocol-

Independent Software Switch”. In: ACM SIGCOMM ’16.
[32] A. Panda et al. “NetBricks: Taking the V out of NFV”. In:

USENIX OSDI’16.
[33] D. Firestone et al. “Azure Accelerated Networking: SmartNICs

in the Public Cloud”. In: USENIX NSDI 2018.
[34] M. Dalton et al. “Andromeda: Performance, Isolation, and Ve-

locity at Scale in Cloud Network Virtualization”. In: USENIX
NSDI 2018.

https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
https://www.netronome.com/media/redactor_files/PB_Agilio_CX_2x40GbE.pdf
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
http://www.intel.com/content/www/us/en/intelligent-systems/previous-generation/intel-ixp4xx-intel-network-processor-product-line.html
https://www.netcope.com/en/products/fpga-boards
https://www.netcope.com/en/products/fpga-boards
http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html
http://www.cavium.com/XPliant-Ethernet-Switch-ProductFamily.html
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
http://www.intel.com/content/dam/www/public/us/en/documents/product-briefs/ethernet-switchfm6000-series-brief.pdf
https://barefootnetworks.com/products/brief-tofino/
https://barefootnetworks.com/products/brief-tofino/

[35] R. Morris et al. “The Click modular router”. In: ACM Trans.
on Computer Systems 2000.

[36] N. McKeown et al. “OpenFlow: Enabling Innovation in
Campus Networks”. In: ACM SIGCOMM CCR 38.2, Mar.
2008.

[37] M. Moshref et al. “Flow-level State Transition As a New
Switch Primitive for SDN”. In: ACM HotSDN ’14.

[38] G. Bianchi et al. “OpenState: Programming Platform-
independent Stateful Openflow Applications Inside the Switch”.
In: ACM SIGCOMM CCR 44.2, Apr. 2014.

[39] A. Sivaraman et al. “Packet Transactions: High-Level Program-
ming for Line-Rate Switches”. In: ACM SIGCOMM ’16.

[40] L. Yang et al. Forwarding and Control Element Separation
(ForCES) Framework. RFC 3746. IETF. Apr. 2004.

[41] P4.org. P4 Runtime. https://p4.org/p4-runtime.
[42] R. Bifulco et al. The Programmable Data Plane: Reading

List. https: / /rg0now.github.io/prog dataplane reading list /
README.html.

[43] M. Casado et al. “Ethane: Taking Control of the Enterprise”.
In: ACM SIGCOMM ’07.

[44] N. Foster et al. “Languages for software-defined networks”.
In: IEEE Communications Magazine 51.2, 2013.

[45] G. Rétvári et al. “Dynamic Compilation and Optimization of
Packet Processing Programs”. In: ACM SIGCOMM NetPL
2017.

[46] L. Jose et al. “Compiling Packet Programs to Reconfigurable
Switches”. In: USENIX NSDI ’15.

[47] P. Kazemian et al. “Real Time Network Policy Checking Using
Header Space Analysis”. In: USENIX NSDI 13.

[48] A. Khurshid et al. “Veriflow: Verifying network-wide invariants
in real time”. In: ACM SIGCOMM HotSDN 2012.

[49] H. Song. “Protocol-oblivious Forwarding: Unleash the Power
of SDN Through a Future-proof Forwarding Plane”. In: ACM
HotSDN ’13.

[50] P. Bosshart et al. “Forwarding Metamorphosis: Fast Pro-
grammable Match-action Processing in Hardware for SDN”.
In: ACM SIGCOMM ’13.

[51] S. Chole et al. “dRMT: Disaggregated Programmable Switch-
ing”. In: ACM SIGCOMM ’17.

[52] P. K. et al. “Content-addressable memory (CAM) circuits and
architectures: A tutorial and survey”. In: IEEE Journal of
Solid-State Circuits 41.3, 2006.

[53] A. Feldman et al. “Tradeoffs for packet classification”. In:
IEEE INFOCOM 2000.

[54] K. Kogan et al. “SAX-PAC (Scalable And eXpressive PAcket
Classification)”. In: ACM SIGCOMM ’14.

[55] V. Srinivasan et al. “Packet Classification Using Tuple Space
Search”. In: ACM SIGCOMM ’99.

[56] W. P. Stevens et al. “Structured design”. In: IBM Systems
Journal 13.2, 1974.

[57] I. D. Zone. Data Flow Graph. Web page, last accessed April
20 2018. 2018.

[58] M. Abadi et al. “TensorFlow: A system for large-scale machine
learning”. In: USENIX OSDI 2016.

[59] S. Han et al. “PacketShader: A GPU-accelerated Software
Router”. In: ACM SIGCOMM ’10.

[60] T. Barbette et al. “Fast Userspace Packet Processing”. In:
ANCS ’15.

[61] R. Laufer et al. “CliMB: Enabling Network Function Compo-
sition with Click Middleboxes”. In: HotMIddlebox ’16.

[62] B. Li et al. “ClickNP: Highly Flexible and High Performance
Network Processing with Reconfigurable Hardware”. In: ACM
SIGCOMM ’16.

[63] N. Kumar. Juniper Advancing Disaggregation Through P4
Runtime Integration. https://forums.juniper.net/t5/The-New-
Network/Juniper- Advancing- Disaggregation- Through- P4-
Runtime-Integration/ba-p/319195. 2018.

[64] Stratum project. Developing an open source reference imple-
mentation for white box switches supporting next-generation
SDN interfaces. https://stratumproject.org. 2018.

[65] A. Kalia et al. “Raising the Bar for Using GPUs in Software
Packet Processing”. In: USENIX NSDI’15.

[66] Y. Go et al. “APUNet: Revitalizing GPU as Packet Processing
Accelerator”. In: USENIX NSDI 2017.

[67] A. Kaufmann et al. “High Performance Packet Processing with
FlexNIC”. In: SIGPLAN Not. 51.4, Mar. 2016.

[68] A. Sivaraman et al. “Programmable Packet Scheduling at Line
Rate”. In: ACM SIGCOMM ’16.

[69] S. Woo et al. “Elastic Scaling of Stateful Network Functions”.
In:

[70] M. Bansal et al. “Atomix: A Framework for Deploying
Signal Processing Applications on Wireless Infrastructure”.
In: USENIX NSDI 2015.

[71] G. Gibb et al. “Design principles for packet parsers”. In: ANCS
’13.

[72] R. Mittal et al. “Universal Packet Scheduling”. In: USENIX
NSDI 2016.

[73] S. Ghorbani et al. “DRILL: Micro Load Balancing for Low-
latency Data Center Networks”. In: SIGCOMM ’17.

[74] R. Miao et al. “SilkRoad: Making Stateful Layer-4 Load
Balancing Fast and Cheap Using Switching ASICs”. In: ACM
SIGCOMM ’17.

[75] R. Poddar et al. “SafeBricks: Shielding Network Functions in
the Cloud”. In: USENIX NSDI 2018.

[76] G. Bianchi et al. “Open Packet Processor: a programmable
architecture for wire speed platform-independent stateful in-
network processing”. In: CoRR abs/1605.01977, 2016.

[77] X. Li et al. “Be Fast, Cheap and in Control with SwitchKV”.
In: USENIX NSDI 2016.

[78] H. T. Dang et al. “Paxos Made Switch-y”. In: ACM SIGCOMM
Comput. Commun. Rev. 46.2, May 2016.

[79] H. T. Dang et al. “NetPaxos: Consensus at Network Speed”.
In: ACM SOSR ’15.

[80] G. Siracusano et al. “In-network Neural Networks”. In: CoRR
abs/1801.05731, 2018. arXiv: 1801.05731.

[81] Y. Gong et al. “Towards Accurate Online Traffic Matrix
Estimation in Software-defined Networks”. In: ACM SOSR
’15.

[82] X. Jin et al. “NetCache: Balancing Key-Value Stores with Fast
In-Network Caching”. In: SOSP ’17.

[83] N. K. Sharma et al. “Evaluating the Power of Flexible Packet
Processing for Network Resource Allocation”. In: USENIX
NSDI 2017.

[84] U. Drepper. What every programmer should know about
memory. Web page, last accessed April 21 2018. 2007.

[85] M. Kablan et al. “Stateless Network Functions: Breaking the
Tight Coupling of State and Processing”. In: USENIX NSDI
2017.

[86] T. Dietz et al. “Enhancing the BRAS through virtualization”.
In: IEEE NetSoft 2015.

[87] B. Butler. What is intent-based networking?
https://www.networkworld.com/article/3202699/lan-
wan/what-is-intent-based-networking.html. 2017.

[88] G. Rétvári et al. “Compressing IP Forwarding Tables: Towards
Entropy Bounds and Beyond”. In: ACM SIGCOMM ’13.

[89] A. X. Liu et al. “TCAM Razor: A Systematic Approach
Towards Minimizing Packet Classifiers in TCAMs”. In:
IEEE/ACM Trans. Netw. 18.2, Apr. 2010.

[90] M. Kuzniar et al. What you need to know about SDN control
and data planes. Tech. rep. EPFL-REPORT-199497. EPFL,
2014.

[91] T. Dargahi et al. “A Survey on the Security of Stateful SDN
Data Planes”. In: IEEE Communications Surveys Tutorials
19.3, 2017.

https://p4.org/p4-runtime
https://rg0now.github.io/prog_dataplane_reading_list/README.html
https://rg0now.github.io/prog_dataplane_reading_list/README.html
https://forums.juniper.net/t5/The-New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195
https://forums.juniper.net/t5/The-New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195
https://forums.juniper.net/t5/The-New-Network/Juniper-Advancing-Disaggregation-Through-P4-Runtime-Integration/ba-p/319195
https://stratumproject.org
http://arxiv.org/abs/1801.05731

	Introduction
	The Anatomy of a Programmable Switch
	Taxonomies for Programmable Switches
	System Level View
	Software vs. Hardware-based Switches
	Abstractions and Architectures
	The data flow graph abstraction
	The match-action pipeline abstraction
	Hybrid switch abstractions

	Stateful vs Stateless

	Open Issues
	Abstractions for comprehensive reconfigurability
	Abstractions for exposing global state
	Abstractions for intent-based networking
	Abstractions for verifiability
	Abstractions for security and scalability

	Conclusion

